Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata
نویسندگان
چکیده
Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch’s postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine ‘‘reverse zoonosis’’ involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. Citation: Sutherland KP, Shaban S, Joyner JL, Porter JW, Lipp EK (2011) Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata. PLoS ONE 6(8): e23468. doi:10.1371/journal.pone.0023468 Editor: Steve Vollmer, Northeastern University, United States of America Received February 28, 2011; Accepted July 18, 2011; Published August 17, 2011 Copyright: 2011 Sutherland et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported by Mote Marine Laboratory Protect Our Reefs grant POR-2008-23 (www.mote.org) to KPS and EKL, the Rollins College Student-Faculty Collaborative Research Program and Edward W. and Stella C. Van Houten Memorial Fund to SS and KPS, and by a Rollins College Critchfield Research Grant (www.rollins.edu) to KPS. Additional partial support was provided by National Science Foundation (NSF) grants EF-1015032 to KPS and EF-1015342 to JWP and EKL as part of the joint NSF-National Institutes of Health Ecology of Infectious Disease program (www.nsf.org) and by the US Environmental Protection Agency South Florida Water Quality Protection Program (www.epa.gov) to JWP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected]
منابع مشابه
Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata
Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens str...
متن کاملGenome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata (#18713)
متن کامل
Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf.
It has been proposed that the elkhorn coral, Acropora palmata, is genetically separated into two distinct provinces in the Caribbean, an Eastern and a Western population admixing in western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analys...
متن کاملGenome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata
The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation effort...
متن کاملShifting white pox aetiologies affecting Acropora palmata in the Florida Keys, 1994-2014.
We propose 'the moving target hypothesis' to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata. Acropori...
متن کامل